## Part I.

ALGEBRA I
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
3-1. Compute the greatest integer value of $x$ that solves $\frac{6}{5} x+2>\frac{8}{3} x-4$.
3-2. Compute all ordered triples $(x, y, z)$ of real numbers that solve the following:
$x y+y z=6$
$x z+x y=-28$
$y z+x z=-38$

Part II.
GEOMETRY
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
3-3. In right triangle $T R I$ with hypotenuse $\overline{T R}, \sin T+\sin R=1.3450$. Find $\cos T+\cos R$ to four decimal places.

3-4. Triangle $B O X$ has vertices at $B(-2,2), O(1,2)$, and $X(1,6)$. After a glide reflection, the coordinates of the vertices of the image triangle are $B^{\prime \prime}(6,2), O^{\prime \prime}(6,5)$, and $X^{\prime \prime}(10,5)$. Determine the equation of the line used in the glide reflection (with coefficents in simplest form) and the direction of the translation (that is, if the translation is $T_{a, b}$, compute $a$ and $b$ ).

## Part III. <br> ALGEBRA II / ADVANCED TOPICS

The word "compute" calls for an exact answer in simplest form.
3-5. The circle with equation $x^{2}+y^{2}+6 x-4 y-23=0$ has a center at $(h, k)$ and a radius of $r$. Compute $h+k+r$.

3-6. Compute all values of $x$ that satisfy the following equation: $|x|+5-|x+5|=10$

R-1. The diagonals of square $A B C D$ intersect at $E$. How many distinct triangles can be formed whose vertices are at $A, B, C, D$, or $E$ ?

R-2. Let $N$ be the number you will receive. The number $2^{N} \cdot 5^{4}$ is written as a decimal number. Compute the sum of the digits of this number.

R-3. Let $N$ be the number you will receive. The point $P$ is one-third of the way from $(N, N)$ to $(16,-5)$. Compute the coordinates of $P$.

R-4. Let $P$ be the point you will receive. The graph of the parabola with equation $y=a x^{2}+b x+c$ passes through $(6,3),(8,4)$, and $P$. Compute the product $a b c$.

R-5. Let $N$ be the number you will receive. A jar contains 15 balls, of which $N$ are black and the rest are red. If three balls are chosen from the jar without replacement, compute the probability that all three are red.

